炼钢高新技术之特殊冶金法
包括电渣重熔、真空冶金、等离子冶金、电子束熔炼、区域熔炼等多种炼钢方法的总称。某些高新技术或特殊用途要求特高纯度钢,若用普通炼钢方法加炉外精炼达不到要求时,则可采用特殊冶金方法炼制。
电渣重熔:将冶炼好的钢铸造或锻压成为电极,通过熔渣电阻热进行二次重熔的精炼工艺,也称ESR。它的热源来自熔渣电阻热,重熔时自耗电极浸入熔渣中,电流通过电离后的熔渣,使熔渣升温达到比被熔自耗电极熔点高得多的温度。插入熔渣中的自耗电极端头熔化后形成熔滴,并靠自重穿越渣池,得到渣洗精炼而后在减少空气污染的情况下进入金属熔池。钢锭与结晶器壁之间形成薄的渣皮,既减缓了径向冷却,也改善了成品钢锭表面质量,借助结晶器底部水冷,凝固成轴向结晶倾向和偏析少的重熔钢锭,改善了热加工塑性。
等离子冶金:以等离子流为热源的冶金过程,即利用等离子枪将电能转变为定向等离子射流中的热能。等离子射流具有电弧稳定、热量高度集中、可达到非常高的温度等特点。有的等离子枪的工作温度高达5000~20000℃。等离子枪可用惰性气体(Ar)、还原性气体(H2)等为介质,以达到不同的冶金目的。等离子炉可用于熔炼高熔点金属和活泼金属以及金属或合金的提纯。等离子体技术也已用于钢铁厂废尘处理和铁合金生产工艺。
喷射冶金:为加速液体金属与物料的物理化学反应,用气体喷射的方法把粉末物料送入液体金属,完成冶金反应的工艺,亦称喷粉冶金。该工艺广泛用于铁水予处理和钢包精炼,以达到脱硫、脱氧、成分微调、使夹杂物变性的目的。此工艺的反应速度快,物料利用率高。
区域熔炼:1952年W.G.Pfann提出的一种利用液固相中杂质元素溶解度不同的特点提炼金属的工艺。其操作原理是:设一个均匀的固态金属棒中有一小段金属被熔化成液体,那么,若这一小段液态区域自左向右缓慢移动,则每移动一次,杂质都会重新分布,其效果就相当于把杂质驱赶到右端。经过多次这样的重复,左端金属便可达到很高的纯度。
真空冶金:在低于0.1MPa至超高真空条件下133.3×(<760~10-12)Pa进行的冶金过程,包括金属及合金的提炼、冶炼、重熔、精炼、成形和热处理。目的主要在于:
①减少金属受气相的污染;
②降低溶解于金属中的气体或易挥发的杂质含量;
③促进有气态产物的化学反应;
④避免由耐火材料容器带来的污染。以适应高性能金属材料及新型金属材料的需要。随着生产电热材料、电工合金、软磁合金以及高温镍基合金等高性能和新型金属材料的需要,发展了各种真空熔炼方法,主要有真空电阻熔炼、真空感应熔炼、真空电弧重熔、电子束熔炼及电渣重熔等。
真空电弧熔炼:在真空(10-2~10-1Pa)下借助电弧供热重熔金属和合金的工艺,也称VAR法。其过程是:以水冷铜坩埚为正极,被熔自耗电极接在经滑动密封进入炉体的假电极上为负极,输入低压直流电流在电极与坩埚底之间引弧,借助电弧供热重熔金属和合金。伴随自耗电极的熔化,通过控制电极的下降速度,将自耗电极重熔为成分均匀、组织致密、纯净度高和偏析少的重熔钢锭。它不仅用于重熔活性金属和耐热难熔金属,而且也用于重熔使用要求较严格的高温合金和特殊钢。
真空电子束熔炼:在较高真空(133.3×10-4~133.3×10-8Pa)下用电子枪发射电子束,轰击被熔炼物料,使之熔化并滴入水冷铜结晶器凝固成锭的熔炼方法。锭由机械装置连续抽出。此法可以调节能量分布,控制熔化速度。电子束重熔材料的纯净度比其他真空熔炼法的更高。它适于熔炼钨、钼等金属及其合金、高级合金钢、高温合金和超纯金属。
真空电阻熔炼:在真空下以电流通过导体所产生的热为热源的熔炼方法。一般采取间接加热,由电热体把热能传给炉中物料。根据需要,电阻炉内的气氛可以是惰性或保护性的。真空电阻炉可设计成熔炼炉或热处理炉。
真空感应熔炼:在真空下利用感应电热效应熔炼金属和合金的工艺。按炉料和容量选择电源频率。它有高频(>104Hz)和中频(50~104Hz)以及工频两类。感应炉又分有芯和无芯两大类。前者电热效率高,功率因数高,但要有起熔体,熔炼温度低,适用于单一品种的连续熔炼;后者熔炼温度高,电热效率低,适于特殊钢和镍基合金等的熔炼。真空感应熔炼在高温合金、高强度钢和超高强度钢等生产中得到广泛应用。