冶炼废水中应用全自动过滤器处理重金属的方法
在冶炼过程中会产生大量的工业废水,这种废水的来源包括冷却水、冶炼冲渣水、烟气制酸的污酸废水、冶炼过程中的清洗水以及雨水等。冶炼废水中常富含多种重金属,重金属污染的水体存在持久危害性,并且随着污染物的迁移转化。因此,
研究能够同时高效去除多种重金属的方法,对于冶炼废水处理具有重要意义。 对于含重金属的冶炼废水,传统方法有物理吸附法、化学混凝法、光化学催化法以及生物处理方法等。其中物理吸附法操作简单且经济高效,是应用普遍的一种深度处理技术。膨润土作为一种天然廉价的粘土矿物吸附剂,其结构和功能可调控,在水处理中具有良好的应用前景[7]。目前膨润土的主要改性方法有:酸化改性、钠化锂化改性、有机改性和热改性。随着微波化学
研究的深入,目前人们已经将微波技术应用到高分子合成、固体快离子导体的制备、超细纳米粉体材料等多种领域。采用微波改性膨润土,有望在提高吸附剂性能的同时,节约能耗和降低成本。 改性膨润土吸附技术在实际废水处理中尚存在沉降性能较差的缺点,
研究表明物理吸附法-化学混凝法联用技术可提高水处理剂的沉降性能。
本文尝试采用微波改性膨润土和PAM联用技术处理某冶炼废水中的重金属,以其提高实际冶炼废水中重金属的处理效率并降低处理成本。
1试验部分
1.1试验土样、试剂及仪器 试验采用钙基膨润土产自内蒙古地区。其阳离子交换容量为1.08mmol/g,单位晶胞平均电荷为-0.82e,用XRD对此膨润土样的成分
分析。 试验试剂:聚丙烯酰胺、聚合氯化铝、氢氧化钠,以上试剂均为
分析纯。 试验仪器:电子天平、原子吸收光谱仪、混凝搅拌器、pH计、微波发生器,低温冷冻离心机。
1.2微波改性膨润土的制备 原土预处理:将钙基膨润土原土用蒸馏水浸泡10h,水洗3次后风干至恒重,再研磨,过0.075mm筛,作为原土备用。 用坩埚取一定量的膨润土原土,将其放置于微波炉中,恒定功率微波消解不同时间,即得到试验所需的微波改性膨润土。
1.3
分析指标及方法 试验所用废水水样取自某铅锌冶炼厂废水排放口,pH为4.3;COD为27mg/L;SS质量浓度为6.4mg/L;铅质量浓度为1.46mg/L;锌质量浓度为219.40mg/L;镉质量浓度为10.55mg/L;锰质量浓度为19.25mg/L。 吸附试验:取600mL实际冶炼废水水样于1L的有机玻璃烧杯中,加入一定量的微波改性膨润土,调节溶液pH,以200r/min的速度搅拌一定时间,然后以3000r/min速度离心后,取10mL上清液置于25mL离心管中,并测定上清液中的重金属含量。 混凝试验:将经吸附处理过的水样置于1L的有机玻璃烧杯中,加入一定量的混凝剂,在混凝搅拌器中先快速搅拌5min,静置沉降15min后,通过取样口得到上清液并测定其中的重金属含量。
2结果与讨论
2.1膨润土投加量对重金属去除率的影响 分别采用膨润土原土和微波改性膨润土进行吸附试验,考察膨润土投加量对重金属去除率的影响。 随着投加量的增加,膨润土原土和微波改性膨润土对重金属的去除率均呈现出上升的趋势。当投加量相同时,微波改性膨润土对重金属的吸附能力明显优于原膨润土,当投加量为25g/L时,微波改性膨润土对锰、锌、镉和铅的去除率分别达到了71.9%、89.7%、78.5%和93.1%,相对于原土,分别提高了9.8%、5.4%、15%和1.2%。但出水中锌、镉浓度仍未能达到铅、锌工业污染物排放标准。
2.2吸附与混凝联用对重金属的去除效果
2.2.1不同混凝剂与微波改性膨润土联用对重金属去除效果的影响 分别选取PAM和PAC两种常见混凝剂,采用吸附-混凝联用技术,同时加入微波改性膨润土与混凝剂,考察不同混凝剂对重金属去除效果的影响。控制废水水样pH=7,微波改性膨润土投加量为25g/L,吸附时间为60min,2种混凝剂投加量均为2~12mg/L, PAM对重金属处理效果要明显优于PAC的处理效果。随着投加量的增加,混凝剂与微波改性膨润土联用后对重金属的去除率逐渐增加。当PAM的投加量为6mg/L时,对锰、锌、镉和铅的去除率分别可以达到96.3%、94.8%、95.7%和94.7%。但随着PAM的投加量继续增加,去除率基本保持不变。而且混凝过程中,PAM可以快速形成较大且密实的絮体,沉降速度明显快于PAC。说明PAM对吸附后膨润土的网捕以及吸附架桥能力强于PAC,因此,在后续试验中将采用PAM作为混凝剂。
2.2.2不同PAM投加量与微波改性膨润土联用对重金属去除效果的影响 调节废水水样pH为7,先投加微波改性膨润土,控制微波改性膨润土的投加量为25g/L,吸附时间为60min,待吸附完成之后再投加PAM且投加量分别为1~6mg/L,通过吸附-混凝联用技术进一步考察PAM投加量对重金属去除效果的影响,随着PAM投加量的增大,吸附-混凝对冶炼废水中的重金属去除率逐渐增高,这主要是由于当PAM投加量较小时,虽然少量的PAM与膨润土形成了絮体,但是絮体体积较小,不易沉降,所以导致混凝阶段完成之后,去除效果不明显,当增大PAM的投加量时,足够的混凝剂可以快速通过架桥以及网捕作用形成较大的絮体,并且迅速沉至烧杯底部,从而去除效率增加。
2.2.3吸附时间对重金属去除效果的影响 选取微波改性膨润土投加量为25g/L,PAM投加量为2mg/L,水样pH为7,吸附时间分别为20~70min,考察吸附时间对重金属去除效果的影响,重金属的去除率随着吸附时间的增加而增加,当吸附时间为50min时,对锰、锌、镉和铅的去除率分别为98.9%、93.9%、99.3%和97.4%,吸附时间的继续增加,去除率均增长缓慢,曲线趋于平缓,说明当吸附时间为50min时,基本达到吸附平衡。因此,控制最佳吸附时间为50min。
2.2.4水样pH对重金属去除效果的影响 选取微波改性膨润土投加量为25g/L,PAM投加量为2mg/L,调节水样pH为4~9,吸附时间为50min,考察pH对重金属去除效果的影响,重金属的去除率均随着pH的增大而增加。在酸性环境下,由于水中大量存在H+与重金属离子发生竞争吸附,从而致使吸附混凝联合技术对重金属的去除效果相对较差;当pH升高时,OH-离子增加,降低了竞争吸附,从而使重金属的去除率增加。当pH=8时,对锰、锌、镉和铅的去除率分别达到98.9%、99.6%、99.7%和98.3%。为避免出水后pH过高,pH应选择8为宜。在此pH下,出水中的锌、镉和铅的排放浓度均达到GB25466-2010,锰的排放浓度达到城市污水再生利用工业用水水质。
2.2.5微波改性膨润土吸附及其与PAM混凝联用处理后水样的沉降性能比较 比较微波改性膨润土和吸附-混凝联用技术吸附处理后沉降3min时水样的沉降效果结果表明,采用吸附混凝联用技术处理后沉降3min后,绝大部分絮体已经沉至烧杯底部;而此时单独采用微波改性膨润土吸附处理的水样仍呈悬浊状,且经过1h后仍未达到完全沉降。说明采用吸附-混凝联用技术可以大大提高水样的沉降性,节省了水力停留时间。
2.2.6扫描电镜 利用扫描电镜分别对膨润土原土、微波改性膨润土和吸附混凝处理后絮体的结构进行了观察,结果如图8所示。从图8中可以看出,微波改性膨润土相比原土呈现出了更多的卷边结构的板状体,这些板状体可以形成小空隙,从而提高了膨润土的吸附性能。膨润土表面覆盖着大量的絮体,说明PAM与已完成吸附的改性膨润土通过吸附架桥、网捕等作用快速沉降至烧杯底部。
3结论
微波改性后的膨润土的吸附性能要优于膨润土原土。当投加量均为25g/L时,微波改性膨润土对冶炼废水中锰、锌、镉和铅的去除率分别为71.9%、89.7%、78.5%和93.1%。 采用微波改性膨润土吸附-PAM混凝联用技术对冶炼废水中重金属进行处理,处理效果要好优于微波改性膨润土吸附-PAC混凝联用技术,沉降性能得到改善。